Constructor
new NDArray(data, options)
- Source:
Parameters:
| Name | Type | Description | |||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
data |
TypedArray | The underlying physical storage. |
|||||||||||||||||||||||||
options |
Object |
Properties
|
Classes
Members
(static) optimize :NDWasmOptimize
- Description:
Optimization module for linear programming, non-linear minimization, and linear regression.
- Source:
Optimization module for linear programming, non-linear minimization, and linear regression.
Type:
Methods
abs() → {NDArray}
- Description:
Returns a new array with the absolute value of each element.
- Source:
Returns:
- Type
- NDArray
add(other) → {NDArray}
- Description:
Element-wise addition. Supports broadcasting.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to add. |
Returns:
A new array containing the results.
- Type
- NDArray
all() → {boolean}
- Description:
Checks if all elements in the array are truthy.
- Source:
Returns:
- Type
- boolean
any() → {boolean}
- Description:
Checks if any element in the array is truthy.
- Source:
Returns:
- Type
- boolean
argmax() → {number}
- Description:
Returns the index of the maximum value in a flattened array.
- Source:
Returns:
- Type
- number
argmin() → {number}
- Description:
Returns the index of the minimum value in a flattened array.
- Source:
Returns:
- Type
- number
argsort() → {NDArray}
- Description:
Returns the indices that would sort the array. This is a wrapper around
NDWasmAnalysis.argsort.
- Source:
- See:
Returns:
An array of indices.
- Type
- NDArray
asContiguous() → {NDArray}
- Description:
Ensures the returned array has a contiguous memory layout. If the array is already contiguous, it returns itself. Otherwise, it returns a copy. Often used as a pre-processing step before calling WASM or other libraries.
- Source:
Returns:
NDArray view.
- Type
- NDArray
bitwise_and(other) → {NDArray}
- Description:
bitwise AND. Returns a new array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to perform the operation with. |
Returns:
- Type
- NDArray
bitwise_lshift(other) → {NDArray}
- Description:
bitwise lshift. Returns a new array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to perform the operation with. |
Returns:
- Type
- NDArray
bitwise_not() → {NDArray}
- Description:
bitwise NOT. Returns a new array.
- Source:
Returns:
- Type
- NDArray
bitwise_or(other) → {NDArray}
- Description:
bitwise OR. Returns a new array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to perform the operation with. |
Returns:
- Type
- NDArray
bitwise_rshift(other) → {NDArray}
- Description:
bitwise (logical) rshift. Returns a new array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to perform the operation with. |
Returns:
- Type
- NDArray
bitwise_xor(other) → {NDArray}
- Description:
bitwise XOR. Returns a new array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to perform the operation with. |
Returns:
- Type
- NDArray
ceil() → {NDArray}
- Description:
Returns a new array with the smallest integer greater than or equal to each element.
- Source:
Returns:
- Type
- NDArray
cholesky() → {NDArray}
- Description:
Computes the Cholesky decomposition. This is a wrapper around
NDWasmDecomp.cholesky.
- Source:
- See:
Returns:
The lower triangular matrix L.
- Type
- NDArray
colview(j) → {NDArray}
- Description:
Returns a 1D view of the j-th column. Only applicable to 2D arrays.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
j |
number | The column index. |
Returns:
A 1D NDArray view.
- Type
- NDArray
cond(norm) → {number}
- Description:
Estimates the reciprocal condition number of the matrix. This is a wrapper around
NDWasmAnalysis.cond.
- Source:
- See:
Parameters:
| Name | Type | Default | Description |
|---|---|---|---|
norm |
number |
1
|
The norm type. |
Returns:
The reciprocal condition number.
- Type
- number
conv2d(kernel, stride, padding) → {NDArray}
- Description:
Performs 2D spatial convolution. This is a wrapper around
NDWasmSignal.conv2d.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
kernel |
NDArray | The convolution kernel. |
stride |
number | The stride. |
padding |
number | The padding. |
Returns:
The convolved array.
- Type
- NDArray
copy(the) → {NDArray}
- Description:
Returns a new, contiguous array with the same data. O(n) operation. This converts any view (transposed, sliced) into a new array with a standard C-style memory layout.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
the |
string | undefined | target dtype |
Returns:
NDArray view.
- Type
- NDArray
correlate2d(kernel, stride, padding) → {NDArray}
- Description:
Performs 2D spatial cross-correlation. This is a wrapper around
NDWasmSignal.correlate2d.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
kernel |
NDArray | The correlation kernel. |
stride |
number | The stride. |
padding |
number | The padding. |
Returns:
The correlated array.
- Type
- NDArray
cos() → {NDArray}
- Description:
Returns a new array with the cosine of each element.
- Source:
Returns:
- Type
- NDArray
cov() → {NDArray}
- Description:
Computes the covariance matrix. This is a wrapper around
NDWasmAnalysis.cov.
- Source:
- See:
Returns:
The covariance matrix.
- Type
- NDArray
crossProduct(other) → {NDArray}
- Description:
Cross Product. Only valid for 1D vectors of length 3.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray |
Returns:
New NDArray of size 3.
- Type
- NDArray
cumprod(axisopt) → {NDArray|number}
- Description:
Computes the cumprod of elements along the specified axis.
- Source:
Parameters:
| Name | Type | Attributes | Default | Description |
|---|---|---|---|---|
axis |
number | null |
<optional> |
null
|
Returns:
- Type
- NDArray | number
dct() → {NDArray}
- Description:
Computes the 1D Discrete Cosine Transform. This is a wrapper around
NDWasmSignal.dct.
- Source:
- See:
Returns:
The result of the DCT.
- Type
- NDArray
div(other) → {NDArray}
- Description:
Element-wise division. Supports broadcasting.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to divide by. |
Returns:
A new array containing the results.
- Type
- NDArray
dotProduct(other) → {number}
- Description:
Dot Product (Scalar Inner Product). Supports 1D arrays (vectors) only.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray |
Returns:
Scalar result.
- Type
- number
eigen() → {Object}
- Description:
Computes the eigenvalues and eigenvectors of a general square matrix.
- Source:
- See:
Returns:
An object containing eigenvalues and eigenvectors.
- Type
- Object
eigenSym(vectors) → {Object}
- Description:
Computes the eigenvalue decomposition for a symmetric matrix. This is a wrapper around
NDWasmAnalysis.eigenSym.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
vectors |
boolean | Whether to compute the eigenvectors. |
Returns:
An object containing the eigenvalues and eigenvectors.
- Type
- Object
eq(other) → {NDArray}
- Description:
Element-wise equality comparison. Returns a new boolean (uint8) array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to compare with. |
Returns:
- Type
- NDArray
exp() → {NDArray}
- Description:
Returns a new array with
eraised to the power of each element.
- Source:
Returns:
- Type
- NDArray
fft() → {NDArray}
- Description:
Computes the 1D Fast Fourier Transform. This is a wrapper around
NDWasmSignal.fft.
- Source:
- See:
This:
- {NDArray}
Returns:
Complex result with shape [..., 2].
- Type
- NDArray
fft2() → {NDArray}
- Description:
Computes the 2D Fast Fourier Transform. The input array must be 3D with shape [rows, cols, 2]. This is a wrapper around
NDWasmSignal.fft2.
- Source:
- See:
Returns:
2D Complex result, with the same shape as input.
- Type
- NDArray
filter(predicateOrMask) → {NDArray}
- Description:
Responsibility: Implements element-wise filtering. Returns a NEW 1D contiguous NDArray (Copy). Filters elements based on a predicate function or a boolean mask.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
predicateOrMask |
function | Array | NDArray | A function returning boolean, or an array/NDArray of the same shape/size containing truthy/falsy values. |
Returns:
A new 1D NDArray containing the matched elements.
- Type
- NDArray
flatten() → {NDArray}
- Source:
Returns:
- new flatten view to the array
- Type
- NDArray
floor() → {NDArray}
- Description:
Returns a new array with the largest integer less than or equal to each element.
- Source:
Returns:
- Type
- NDArray
ger(other) → {NDArray}
- Description:
Computes the vector outer product. This is a wrapper around
NDWasmBlas.ger.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | The other vector. |
Returns:
The resulting matrix.
- Type
- NDArray
get(…indices) → {number}
- Description:
Gets a single element from the array. Note: This has higher overhead than batch operations. Use with care in performance-critical code.
- Source:
Parameters:
| Name | Type | Attributes | Description |
|---|---|---|---|
indices |
number |
<repeatable> |
The indices of the element to get. |
Returns:
- Type
- number
gt(other) → {NDArray}
- Description:
Element-wise greater-than comparison. Returns a new boolean (uint8) array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to compare with. |
Returns:
- Type
- NDArray
gte(other) → {NDArray}
- Description:
Element-wise greater-than-or-equal comparison. Returns a new boolean (uint8) array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to compare with. |
Returns:
- Type
- NDArray
iadd(other) → {NDArray}
- Description:
In-place element-wise addition.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to add. |
Returns:
The modified array (this).
- Type
- NDArray
idiv(other) → {NDArray}
- Description:
In-place element-wise division.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to divide by. |
Returns:
The modified array (this).
- Type
- NDArray
ifft() → {NDArray}
- Description:
Computes the 1D Inverse Fast Fourier Transform. This is a wrapper around
NDWasmSignal.ifft.
- Source:
- See:
This:
- {NDArray}
Returns:
Complex result with shape [..., 2].
- Type
- NDArray
ifft2() → {NDArray}
- Description:
2D Inverse Complex-to-Complex Fast Fourier Transform. The input array must be 3D with shape [rows, cols, 2]. The transform is performed in-place. This is a wrapper around
NDWasmSignal.ifft2.
- Source:
- See:
Returns:
2D Complex result, with the same shape as input.
- Type
- NDArray
imod(other) → {NDArray}
- Description:
In-place element-wise modulo.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar divisor. |
Returns:
The modified array (this).
- Type
- NDArray
imul(other) → {NDArray}
- Description:
In-place element-wise multiplication.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to multiply by. |
Returns:
The modified array (this).
- Type
- NDArray
inv() → {NDArray}
- Description:
Computes the multiplicative inverse of the matrix. This is a wrapper around
NDWasmDecomp.inv.
- Source:
- See:
Returns:
The inverted matrix.
- Type
- NDArray
ipow(other) → {NDArray}
- Description:
In-place element-wise exponentiation.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar exponent. |
Returns:
The modified array (this).
- Type
- NDArray
isub(other) → {NDArray}
- Description:
In-place element-wise subtraction.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to subtract. |
Returns:
The modified array (this).
- Type
- NDArray
iterate(callback)
- Description:
Generic iterator that handles stride logic. It's slow. use map if you want to use jit.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
callback |
function | A function called with |
jsMatMul(other) → {NDArray}
- Description:
Matrix Multiplication in js. Operations: (M, K) @ (K, N) -> (M, N)
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray |
Returns:
New NDArray.
- Type
- NDArray
jsMatVecMul(vec) → {NDArray}
- Description:
Matrix-Vector Multiplication in js. Operation: (M, K) @ (K,) -> (M,)
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
vec |
NDArray |
Returns:
New NDArray (Vector).
- Type
- NDArray
kmeans(k, maxIter) → {Object}
- Description:
Performs K-Means clustering. This is a wrapper around
NDWasmAnalysis.kmeans.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
k |
number | The number of clusters. |
maxIter |
number | The maximum number of iterations. |
Returns:
An object containing the centroids, labels, and number of iterations.
- Type
- Object
kronecker(other) → {NDArray}
- Description:
Computes the Kronecker product. This is a wrapper around
NDWasmAnalysis.kronecker.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | The other matrix. |
Returns:
The result of the Kronecker product.
- Type
- NDArray
log() → {NDArray}
- Description:
Returns a new array with the natural logarithm (base e) of each element.
- Source:
Returns:
- Type
- NDArray
logical_and(other) → {NDArray}
- Description:
Element-wise logical AND. Returns a new boolean (uint8) array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to perform the operation with. |
Returns:
- Type
- NDArray
logical_not() → {NDArray}
- Description:
Element-wise logical NOT. Returns a new boolean (uint8) array.
- Source:
Returns:
- Type
- NDArray
logical_or(other) → {NDArray}
- Description:
Element-wise logical OR. Returns a new boolean (uint8) array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to perform the operation with. |
Returns:
- Type
- NDArray
lt(other) → {NDArray}
- Description:
Element-wise less-than comparison. Returns a new boolean (uint8) array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to compare with. |
Returns:
- Type
- NDArray
lte(other) → {NDArray}
- Description:
Element-wise less-than-or-equal comparison. Returns a new boolean (uint8) array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to compare with. |
Returns:
- Type
- NDArray
lu() → {NDArray}
- Description:
Computes the LU decomposition. This is a wrapper around
NDWasmDecomp.lu.
- Source:
- See:
Returns:
The LU matrix.
- Type
- NDArray
map(fnOrStr) → {NDArray}
- Description:
High-performance element-wise mapping with jit compilation.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
fnOrStr |
string | function | The function string to apply to each element, like 'Math.sqrt(${val})', or a lambda expression |
Returns:
A new array with the results.
- Type
- NDArray
matMul(other) → {NDArray}
- Description:
Performs matrix multiplication. This is a wrapper around
NDWasmBlas.matMul.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | The right-hand side matrix. |
Returns:
The result of the matrix multiplication.
- Type
- NDArray
matMulBatch(other) → {NDArray}
- Description:
Performs batched matrix multiplication. This is a wrapper around
NDWasmBlas.matMulBatch.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | The right-hand side batch of matrices. |
Returns:
The result of the batched matrix multiplication.
- Type
- NDArray
matPow(k) → {NDArray}
- Description:
Computes the matrix power. This is a wrapper around
NDWasmBlas.matPow.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
k |
number | The exponent. |
Returns:
The result of the matrix power.
- Type
- NDArray
matVecMul(vec) → {NDArray}
- Description:
Performs matrix-vector multiplication. This is a wrapper around
NDWasmBlas.matVecMul.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
vec |
NDArray | The vector to multiply by. |
Returns:
The resulting vector.
- Type
- NDArray
max(axisopt) → {NDArray|number}
- Description:
Returns the maximum value along the specified axis.
- Source:
Parameters:
| Name | Type | Attributes | Default | Description |
|---|---|---|---|---|
axis |
number | null |
<optional> |
null
|
Returns:
- Type
- NDArray | number
mean(axisopt) → {NDArray|number}
- Description:
Computes the arithmetic mean along the specified axis.
- Source:
Parameters:
| Name | Type | Attributes | Default | Description |
|---|---|---|---|---|
axis |
number | null |
<optional> |
null
|
Returns:
- Type
- NDArray | number
min(axisopt) → {NDArray|number}
- Description:
Returns the minimum value along the specified axis.
- Source:
Parameters:
| Name | Type | Attributes | Default | Description |
|---|---|---|---|---|
axis |
number | null |
<optional> |
null
|
Returns:
- Type
- NDArray | number
mod(other) → {NDArray}
- Description:
Element-wise modulo. Supports broadcasting.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar divisor. |
Returns:
A new array containing the results.
- Type
- NDArray
mul(other) → {NDArray}
- Description:
Element-wise multiplication. Supports broadcasting.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to multiply by. |
Returns:
A new array containing the results.
- Type
- NDArray
neg() → {NDArray}
- Description:
Returns a new array with the numeric negation of each element.
- Source:
Returns:
- Type
- NDArray
neq(other) → {NDArray}
- Description:
Element-wise inequality comparison. Returns a new boolean (uint8) array.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to compare with. |
Returns:
- Type
- NDArray
norm(type) → {number}
- Description:
Computes the matrix norm. This is a wrapper around
NDWasmAnalysis.norm.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
type |
number | The type of norm to compute. |
Returns:
The norm of the matrix.
- Type
- number
pairwiseDist(other) → {NDArray}
- Description:
Computes the pairwise distances between two sets of vectors. This is a wrapper around
NDWasmAnalysis.pairwiseDist.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | The other set of vectors. |
Returns:
The distance matrix.
- Type
- NDArray
pick(…specs)
- Description:
Advanced Indexing (Fancy Indexing). Returns a physical COPY of the selected data using a JIT-compiled engine. Picks elements along each dimension. Note: unlike numpy, for advanced (fancy) indexing, output shape won't be reordered. Dim for 1-element advanced indexing won't be removed, either.
- Source:
Parameters:
| Name | Type | Attributes | Description |
|---|---|---|---|
specs |
Array.<number> | TypedArray | number | null | undefined |
<repeatable> |
Index selectors. null/undefined means select all |
pinv() → {NDArray}
- Description:
Computes the Moore-Penrose pseudo-inverse of the matrix. This is a wrapper around
NDWasmDecomp.pinv.
- Source:
- See:
Returns:
The pseudo-inverted matrix.
- Type
- NDArray
pow(other) → {NDArray}
- Description:
Element-wise exponentiation. Supports broadcasting.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar exponent. |
Returns:
A new array containing the results.
- Type
- NDArray
push() → {NDWasmArray}
- Description:
push to wasm
- Source:
Returns:
- Type
- NDWasmArray
qr() → {Object}
- Description:
Computes the QR decomposition. This is a wrapper around
NDWasmDecomp.qr.
- Source:
- See:
Returns:
An object containing the Q and R matrices.
- Type
- Object
rank(tol) → {number}
- Description:
Computes the rank of the matrix. This is a wrapper around
NDWasmAnalysis.rank.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
tol |
number | The tolerance for singular values. |
Returns:
The rank of the matrix.
- Type
- number
reshape(…newShape) → {NDArray}
- Description:
Returns a new array with a new shape, without changing data. O(1) operation. This only works for contiguous arrays. If the array is not contiguous, you must call .copy() first.
- Source:
Parameters:
| Name | Type | Attributes | Description |
|---|---|---|---|
newShape |
number |
<repeatable> |
The new shape. |
Returns:
NDArray view.
- Type
- NDArray
rfft() → {NDArray}
- Description:
Computes the 1D Real-to-Complex Fast Fourier Transform. This is a wrapper around
NDWasmSignal.rfft.
- Source:
- See:
This:
- {NDArray}
Returns:
Complex result with shape [..., 2].
- Type
- NDArray
rifft(n) → {NDArray}
- Description:
1D Complex-to-Real Inverse Fast Fourier Transform. The input must be a complex array of shape [k, 2], where k is n/2 + 1. This is a wrapper around
NDWasmSignal.rifft.
- Source:
- See:
This:
- {NDArray}
Parameters:
| Name | Type | Description |
|---|---|---|
n |
number | Length of the original real signal. |
Returns:
Real-valued time domain signal.
- Type
- NDArray
round() → {NDArray}
- Description:
Returns a new array with the value of each element rounded to the nearest integer.
- Source:
Returns:
- Type
- NDArray
rowview(i) → {NDArray}
- Description:
Returns a 1D view of the i-th row. Only applicable to 2D arrays.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
i |
number | The row index. |
Returns:
A 1D NDArray view.
- Type
- NDArray
set(value, …indices) → {NDArray}
- Description:
Sets value(s) in the array using a unified, JIT-optimized engine. Supports scalar indexing, fancy (array) indexing, and NumPy-style broadcasting.
- Source:
Parameters:
| Name | Type | Attributes | Description |
|---|---|---|---|
value |
number | Array | NDArray | The source data to assign. |
|
indices |
number | Array | null |
<repeatable> |
Indices for each dimension. |
Returns:
- Type
- NDArray
sin() → {NDArray}
- Description:
Returns a new array with the sine of each element.
- Source:
Returns:
- Type
- NDArray
slice(…specs) → {NDArray}
- Description:
Returns a new view of the array sliced along each dimension. This implementation strictly follows NumPy's basic slicing logic.
- Source:
Parameters:
| Name | Type | Attributes | Description |
|---|---|---|---|
specs |
Array | number | null | undefined |
<repeatable> |
Slice parameters for each dimension.
|
Throws:
-
If a scalar index is out of bounds or step is zero.
- Type
- Error
Returns:
A new O(1) view of the underlying data.
- Type
- NDArray
solve(b) → {NDArray}
- Description:
Solves a system of linear equations. This is a wrapper around
NDWasmDecomp.solve.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
b |
NDArray | The right-hand side matrix or vector. |
Returns:
The solution matrix.
- Type
- NDArray
sqrt() → {NDArray}
- Description:
Returns a new array with the square root of each element.
- Source:
Returns:
- Type
- NDArray
squeeze(axis) → {NDArray}
- Description:
Remove axes of length one from the shape. O(1) operation.
- Source:
Parameters:
| Name | Type | Default | Description |
|---|---|---|---|
axis |
number | null |
null
|
The axis to squeeze. If null, all axes of length 1 are removed. |
Returns:
NDArray view.
- Type
- NDArray
std(axisopt) → {NDArray|number}
- Description:
Computes the standard deviation along the specified axis.
- Source:
Parameters:
| Name | Type | Attributes | Default | Description |
|---|---|---|---|---|
axis |
number | null |
<optional> |
null
|
The axis to reduce. |
Returns:
- Type
- NDArray | number
sub(other) → {NDArray}
- Description:
Element-wise subtraction. Supports broadcasting.
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
other |
NDArray | number | The array or scalar to subtract. |
Returns:
A new array containing the results.
- Type
- NDArray
sum(axisopt) → {NDArray|number}
- Description:
Computes the sum of elements along the specified axis.
- Source:
Parameters:
| Name | Type | Attributes | Default | Description |
|---|---|---|---|---|
axis |
number | null |
<optional> |
null
|
Returns:
- Type
- NDArray | number
svd() → {Object}
- Description:
Computes the Singular Value Decomposition (SVD). This is a wrapper around
NDWasmDecomp.svd.
- Source:
- See:
Returns:
An object containing the U, S, and V matrices.
- Type
- Object
syrk() → {NDArray}
- Description:
Performs a symmetric rank-k update. This is a wrapper around
NDWasmBlas.syrk.
- Source:
- See:
Returns:
The resulting symmetric matrix.
- Type
- NDArray
tan() → {NDArray}
- Description:
Returns a new array with the tangent of each element.
- Source:
Returns:
- Type
- NDArray
toArray() → {Array|number}
- Description:
To JavaScript Array
- Source:
Returns:
the array
- Type
- Array | number
toString() → {String}
- Description:
Returns a string representation of the ndarray. Formats high-dimensional data with proper indentation and line breaks.
- Source:
Returns:
- Type
- String
toWasm(runtime) → {WasmBuffer}
- Description:
Projects the current ndarray to a WASM proxy (WasmBuffer).
- Source:
Parameters:
| Name | Type | Description |
|---|---|---|
runtime |
WasmRuntime |
Returns:
A WasmBuffer instance representing the NDArray in WASM memory.
- Type
- WasmBuffer
topk(k, largest) → {Object}
- Description:
Finds the top K largest or smallest elements. This is a wrapper around
NDWasmAnalysis.topk.
- Source:
- See:
Parameters:
| Name | Type | Description |
|---|---|---|
k |
number | The number of elements to find. |
largest |
boolean | Whether to find the largest or smallest elements. |
Returns:
An object containing the values and indices of the top K elements.
- Type
- Object
trace() → {number}
- Description:
Calculates the trace of a 2D square matrix (sum of diagonal elements). Complexity: O(n)
- Source:
Throws:
-
If the array is not 2D or not a square matrix.
- Type
- Error
Returns:
The sum of the diagonal elements.
- Type
- number
transpose(…axes) → {NDArray}
- Description:
Returns a new view of the array with axes transposed. O(1) operation.
- Source:
Parameters:
| Name | Type | Attributes | Description |
|---|---|---|---|
axes |
number |
<repeatable> |
The new order of axes, e.g., [1, 0] for a matrix transpose. If not specified, reverses the order of the axes. |
Returns:
NDArray view.
- Type
- NDArray
var(axisopt) → {NDArray|number}
- Description:
Computes the variance along the specified axis. Note: This implementation uses a two-pass approach (mean first, then squared differences). Ensure that the
submethod supports broadcasting ifaxisis not null.
- Source:
Parameters:
| Name | Type | Attributes | Default | Description |
|---|---|---|---|---|
axis |
number | null |
<optional> |
null
|
The axis to reduce. |
Returns:
- Type
- NDArray | number