NDWasmAnalysis

Namespace

NDWasmAnalysis

Description:
  • NDWasmAnalysis: Advanced Analysis, Stats, Spatial & Random Handles O(n log n) sorting, O(n*d^2) statistics, O(n^3) matrix properties, spatial clustering, and high-performance random sampling.

Source:

Methods

(static) argsort(a) → {NDArray}

Description:
  • Returns the indices that would sort an array.

Source:
Parameters:
Name Type Description
a NDArray

Input array.

Returns:

Indices as Int32 NDArray.

Type
NDArray

(static) cond(a, norm) → {number}

Description:
  • estimates the reciprocal condition number of matrix a.

Source:
Parameters:
Name Type Description
a NDArray

Input matrix.

norm number

norm: 1 (1-norm) or Infinity (Infinity norm).

Returns:

result.

Type
number

(static) corr(a) → {NDArray}

Description:
  • Computes the Pearson correlation matrix for a dataset of shape [n_samples, n_features].

Source:
Parameters:
Name Type Description
a NDArray

Data matrix.

Returns:

Correlation matrix of shape [d, d].

Type
NDArray

(static) cov(a) → {NDArray}

Description:
  • Computes the covariance matrix for a dataset of shape [n_samples, n_features].

Source:
Parameters:
Name Type Description
a NDArray

Data matrix.

Returns:

Covariance matrix of shape [d, d].

Type
NDArray

(static) eigenSym(a, computeVectors) → {Object}

Description:
  • Eigenvalue decomposition for symmetric matrices.

Source:
Parameters:
Name Type Description
a NDArray

Symmetric square matrix.

computeVectors boolean

Whether to return eigenvectors.

Returns:
Type
Object

(static) kmeans(data, k, maxIter) → {Object}

Description:
  • Performs K-Means clustering in WASM memory.

Source:
Parameters:
Name Type Description
data NDArray

Data of shape [n_samples, d_features].

k number

Number of clusters.

maxIter number

Maximum iterations.

Returns:
Type
Object

(static) kronecker()

Description:
  • Computes the Kronecker product C = A ⊗ B.

Source:

(static) norm(a, type) → {number}

Description:
  • Computes the matrix norm.

Source:
Parameters:
Name Type Description
a NDArray

Input matrix.

type number

1 (The maximum absolute column sum), 2 (Frobenius), Infinity (The maximum absolute row sum)

Returns:

The norm value.

Type
number

(static) pairwiseDist(a, b) → {NDArray}

Description:
  • Computes pairwise Euclidean distances between two sets of vectors.

Source:
Parameters:
Name Type Description
a NDArray

Matrix of shape [m, d].

b NDArray

Matrix of shape [n, d].

Returns:

Distance matrix of shape [m, n].

Type
NDArray

(static) rank(a, tol) → {number}

Description:
  • Computes the rank of a matrix using SVD.

Source:
Parameters:
Name Type Description
a NDArray

Input matrix.

tol number

Tolerance for singular values (0 for 1e-14).

Returns:

Integer rank of the matrix.

Type
number

(static) topk(a, k, largest) → {Object}

Description:
  • Finds the largest or smallest K elements and their indices. Complexity: O(n log k)

Source:
Parameters:
Name Type Description
a NDArray

Input array.

k number

Number of elements to return.

largest boolean

If true, find max elements; else min.

Returns:
Type
Object